254 research outputs found

    Single-Molecule Imaging Reveals that Argonaute Re-Shapes the Properties of its Nucleic Acid Guides: A Dissertation

    Get PDF
    Small RNA silencing pathways regulate development, viral defense, and genomic integrity in all kingdoms of life. An Argonaute (Ago) protein, guided by a tightly bound, small RNA or DNA, lies at the core of these pathways. Argonaute uses its small RNA or DNA to find its target sequences, which it either cleaves or stably binds, acting as a binding scaffold for other proteins. We used Co-localization Single-Molecule Spectroscopy (CoSMoS) to analyze target binding and cleavage by Ago and its guide. We find that both eukaryotic and prokaryotic Argonaute proteins re-shape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization: a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Counter to the rules of nucleic acid hybridization alone, we find that mouse AGO2 and its guide bind to microRNA targets 17,000 times tighter than the guide without Argonaute. Moreover, AGO2 can distinguish between microRNA-like targets that make seven base pairs with the guide and the products of cleavage, which bind via nine base pairs: AGO2 leaves the cleavage products faster, even though they pair more extensively. This thesis presents a detailed kinetic interrogation of microRNA and RNA interference pathways. We discovered sub-domains within the previously defined functional domains created by Argonaute and its bound DNA or RNA guide. These sub-domains have features that no longer conform to the well-established properties of unbound oligonucleotides. It is by re-writing the rules for nucleic acid hybridization that Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than that of RNA or DNA. Taken altogether, these studies further our understanding about the biology of small RNA silencing pathways and may serve to guide future work related to all RNA-guided endonucleases

    Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates

    Get PDF
    Small interfering RNAs (siRNAs) direct Argonaute proteins, the core components of the RNA-induced silencing complex (RISC), to cleave complementary target RNAs. Here, we describe a method to purify active RISC containing a single, unique small RNA guide sequence. We begin by capturing RISC using a complementary 2\u27-O-methyl oligonucleotide tethered to beads. Unlike other methods that capture RISC but do not allow its recovery, our strategy purifies active, soluble RISC in good yield. The method takes advantage of the finding that RISC partially paired to a target through its siRNA guide dissociates more than 300 times faster than a fully paired siRNA in RISC. We use this strategy to purify fly Ago1- and Ago2-RISC, as well as mouse AGO2-RISC. The method can discriminate among RISCs programmed with different guide strands, making it possible to deplete and recover specific RISC populations. Endogenous microRNA:Argonaute complexes can also be purified from cell lysates. Our method scales readily and takes less than a day to complete

    Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides

    Get PDF
    SummaryArgonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization—a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA

    Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma

    Full text link
    Published in final edited form as: Sci Transl Med. 2017 May 10; 9(389). https://doi.org/10.1126/scitranslmed.aal2668.Multiple myeloma (MM) is a frequently incurable hematological cancer in which overactivity of MYC plays a central role, notably through up-regulation of ribosome biogenesis and translation. To better understand the oncogenic program driven by MYC and investigate its potential as a therapeutic target, we screened a chemically diverse small-molecule library for anti-MM activity. The most potent hits identified were rocaglate scaffold inhibitors of translation initiation. Expression profiling of MM cells revealed reversion of the oncogenic MYC-driven transcriptional program by CMLD010509, the most promising rocaglate. Proteome-wide reversion correlated with selective depletion of short-lived proteins that are key to MM growth and survival, most notably MYC, MDM2, CCND1, MAF, and MCL-1. The efficacy of CMLD010509 in mouse models of MM confirmed the therapeutic relevance of these findings in vivo and supports the feasibility of targeting the oncogenic MYC-driven translation program in MM with rocaglates

    MFGE8 does not influence chorio-retinal homeostasis or choroidal neovascularization in vivo

    Get PDF
    Purpose: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. Methods: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8+/− mice expressing ß-galactosidase. Aged Mfge8+/− and Mfge8−/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. Results: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls. Conclusions: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD

    Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells

    Get PDF
    Cripto-1 (CR-1), a recently discovered protein of the epidermal growth factor (EGF) family, was found to interact with a high affinity, saturable binding site(s) on HC-11 mouse mammary epithelial cells and on several different human breast cancer cell lines. This receptor exhibits specificity for CR-1, since other EGF-related peptides including EGF, transforming growth factor alpha, heparin-binding EGF-like growth factor, amphiregulin, epiregulin, betacellulin, or heregulin beta1 that bind to either the EGF receptor or to other type 1 receptor tyrosine kinases such as erb B-3 or erb B-4 fail to compete for binding. Conversely, CR-1 was found not to directly bind to or to activate the tyrosine kinases associated with the EGFR, erb B-2, erb B-3, or erb B-4 either alone or in various pairwise combinations which have been ectopically expressed in Ba/F3 mouse pro-B lymphocyte cells. However, exogenous CR-1 could induce an increase in the tyrosine phosphorylation of 185- and 120-kDa proteins and a rapid (within 3-5 min) increase in the tyrosine phosphorylation of the SH2-containing adaptor proteins p66, p52, and p46 Shc in mouse mammary HC-11 epithelial cells and in human MDA-MB-453 and SKBr-3 breast cancer cells. CR-1 was also found to promote an increase in the association of the adaptor Grb2-guanine nucleotide exchange factor-mouse son of sevenless (mSOS) signaling complex with tyrosine-phosphorylated Shc in HC-11 cells. Finally, CR-1 was able to increase p42(erk-2) mitogen-activated protein kinase (MAPK) activity in HC-11 cells within 5-10 min of treatment. These data demonstrate that CR-1 can function through a receptor which activates intracellular components in the ras/raf/MEK/MAPK pathway

    Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy.

    Get PDF
    Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes

    Toll-Like Receptor-2 Mediates Diet and/or Pathogen Associated Atherosclerosis: Proteomic Findings

    Get PDF
    BACKGROUND. Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE+/- mice. METHODS AND RESULTS. To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE+/--TLR2+/+, ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 μl live Porphyromonas gingivalis (P.g) (107 CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE+/--TLR2+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE+/--TLR2+/+ mice were significantly higher than from ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE+/--TLR2+/+ mice compared to ApoE+/--TLR2+/- and TLR2-/- mice, irrespective of diet or bacterial challenge. ApoE+/--TLR2+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE+/--TLR2-/- mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimentional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE+/--TLR2+/+ mice fed the high fat diet and inoculated with P.g compared to any other group. CONCLUSION. Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE+/- mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.National Heart, Lung, and Blood Institute (R01 HL076801

    Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed.</p> <p>Results</p> <p>Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of <it>Influenza virus </it>A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 10<sup>1</sup>, 10<sup>2</sup>, 10<sup>3</sup>, or 10<sup>4 </sup>infectious virus particles per ferret.</p> <p>Conclusions</p> <p>Aerosolized <it>Influenza virus </it>A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.</p
    corecore